Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cancer Lett ; 590: 216844, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582394

RESUMO

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.

2.
Int J Clin Pract ; 2024: 3697846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450292

RESUMO

Background: Local infiltration analgesia (LIA) provides postoperative analgesia for total knee arthroplasty (TKA). The purpose of this study was to evaluate the analgesic effect of a cocktail of ropivacaine, morphine, and Diprospan for TKA. Methods: A total of 100 patients from September 2018 to February 2019 were randomized into 2 groups. Group A (control group, 50 patients) received LIA of ropivacaine alone (80 ml, 0.25% ropivacaine). Group B (LIA group, 50 patients) received an LIA cocktail of ropivacaine, morphine, and Diprospan (80 ml, 0.25% ropivacaine, 0.125 mg/ml morphine, and 62.5 µg/ml compound betamethasone). The primary outcomes were the levels of inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6), pain visual analog scale (VAS) scores, opioid consumption, range of motion (ROM), functional tests, and sleeping quality. The secondary outcomes were adverse events, satisfaction rates, HSS scores, and SF-12 scores. The longest follow-up was 2 years. Results: The two groups showed no differences in terms of characteristics (P > 0.05). Group B had lower resting VAS pain scores (1.54 ± 0.60, 95% CI = 1.37 to 1.70 vs. 2.00 ± 0.63, 95% CI = 2.05 to 2.34) and active VAS pain scores (2.64 ± 0.62, 95% CI = 2.46 to 2.81 vs. 3.16 ± 0.75, 95% CI = 2.95 to 3.36) within 48 h postoperatively than Group A (P < 0.001), while none of the pain differences exceeded the minimal clinically important difference (MCID). Group B had significantly lower CRP levels (59.49 ± 13.01, 95% CI = 55.88 to 63.09 vs. 65.95 ± 14.41, 95% CI = 61.95 to 69.94) and IL-6 levels (44.11 ± 13.67, 95% CI = 40.32 to 47.89 vs. 60.72 ± 15.49, 95% CI = 56.42 to 65.01), lower opioid consumption (7.60 ± 11.10, 95% CI = 4.52 to 10.67 vs. 13.80 ± 14.68, 95% CI = 9.73 to 17.86), better ROM (110.20 ± 10.46, 95% CI = 107.30 to 113.09 vs. 105.30 ± 10.02, 95% CI = 102.52 to 108.07), better sleep quality (3.40 ± 1.03, 95% CI = 3.11 to 3.68 vs. 4.20 ± 1.06, 95% CI = 3.90 to 4.49), and higher satisfaction rates than Group A within 48 h postoperatively (P < 0.05). Adverse events, HSS scores, and SF-12 scores were not significantly different within 2 years postoperatively. Conclusions: A cocktail of ropivacaine, morphine, and Diprospan prolongs the analgesic effect up to 48 h postoperatively. Although the small statistical benefit may not result in MCID, the LIA cocktail still reduces opioid consumption, results in better sleeping quality and faster rehabilitation, and does not increase adverse events. Therefore, cocktails of ropivacaine, morphine, and Diprospan have good application value for pain control in TKA. This trial is registered with ChiCTR1800018372.


Assuntos
Artroplastia do Joelho , Betametasona/análogos & derivados , Humanos , Ropivacaina/uso terapêutico , Artroplastia do Joelho/efeitos adversos , Morfina/uso terapêutico , Analgésicos Opioides/uso terapêutico , Interleucina-6 , Estudos Prospectivos , Dor , Combinação de Medicamentos
3.
Skin Res Technol ; 30(3): e13636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424726

RESUMO

BACKGROUND: A growing number of experimental studies have shown an association between the gut microbiota (GM) and facial skin aging. However, the causal relationship between GM and facial skin aging remains unclear to date. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between GM and facial skin aging. MR analysis was mainly performed using the inverse-variance weighting (IVW) method, complemented by the weighted median (MW) method, MR-Egger regression, and weighted mode, and sensitivity analysis was used to test the reliability of MR analysis results. RESULTS: Eleven GM taxa associated with facial skin aging were identified by IVW method analysis, Family Victivallaceae (p = 0.010), Genus Eubacterium coprostanoligenes group (p = 0.038), and Genus Parasutterella (p = 0.011) were negatively associated with facial skin aging, while Phylum Verrucomicrobia (p = 0.034), Family Lactobacillaceae (p = 0.017) and its subgroups Genus Lactobacillus (p = 0.038), Genus Parabacteroides (p = 0.040), Genus Eggerthella (p = 0.049), Genus Family XIII UCG001 (p = 0.036), Genus Phascolarctobacterium (p = 0.027), and Genus Ruminococcaceae UCG005 (p = 0.012) were positively associated with facial skin aging. At Class and Order levels, we did not find a causal relationship between GM and facial skin aging. Results of sensitivity analyses did not show evidence of pleiotropy and heterogeneity. CONCLUSION: Our findings confirm the causal relationship between GM and facial skin aging, providing a new perspective on delaying facial aging.


Assuntos
Microbioma Gastrointestinal , Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Envelhecimento
4.
Med Res Rev ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299968

RESUMO

Prostate, bladder, and kidney cancers are the most common malignancies of the urinary system. Chemotherapeutic drugs are generally used as adjuvant treatment in the middle, late, or recurrence stages after surgery for urologic cancers. However, traditional chemotherapy is plagued by problems such as poor efficacy, severe side effects, and complications. Copper-containing nanomedicines are promising novel cancer treatment modalities that can potentially overcome these disadvantages. Copper homeostasis and cuproptosis play crucial roles in the development, adaptability, and therapeutic sensitivity of urological malignancies. Cuproptosis refers to the direct binding of copper ions to lipoylated components of the tricarboxylic acid cycle, leading to protein oligomerization, loss of iron-sulfur proteins, proteotoxic stress, and cell death. This review focuses on copper homeostasis and cuproptosis as well as recent findings on copper and cuproptosis in urological malignancies. Furthermore, we highlight the potential therapeutic applications of copper- and cuproptosis-targeted therapies to better understand cuproptosis-based drugs for the treatment of urological tumors in the future.

5.
CNS Neurosci Ther ; 30(2): e14366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37485655

RESUMO

AIMS: PSMD family members, as important components of the 26S proteasome, are well known to be involved in protein degradation. However, their role in glioblastoma (GBM) has not been rigorously investigated. We aimed to perform systematic analysis of the expression signature, prognostic significance and functions of PSMD family genes in GBM to reveal potential prognostic markers and new therapeutic targets among PSMD family members. METHODS: In this study, we systemically analyzed PSMD family members in terms of their expression profiles, prognostic implications, DNA methylation levels, and genetic alterations; the relationships between their expression levels and immune infiltration and drug sensitivity; and their potential functional enrichment in GBM through bioinformatics assessment. Moreover, in vitro and in vivo experiments were used to validate the biological functions of PSMD9 and its targeted therapeutic effect in GBM. RESULTS: The mRNA levels of PSMD5/8/9/10/11/13/14 were higher in GBM than in normal brain tissues, and the mRNA levels of PSMD1/4/5/8/9/11/12 were higher in high-grade glioma (WHO grade III & IV) than in low-grade glioma (WHO grade II). High mRNA expression of PSMD2/6/8/9/12/13/14 and low mRNA expression of PSMD7 were associated with poor overall survival (OS). Multivariate Cox regression analysis identified PSMD2/5/6/8/9/10/11/12 as independent prognostic factors for OS prediction. In addition, the protein-protein interaction network and gene set enrichment analysis results suggested that PSMD family members and their interacting molecules were involved in the regulation of the cell cycle, cell invasion and migration, and other biological processes in GBM. In addition, knockdown of PSMD9 inhibited cell proliferation, invasion and migration and induced G2/M cell cycle arrest in LN229 and A172 GBM cells. Moreover, PSMD9 promoted the malignant progression of GBM in vivo. GBM cell lines with high PSMD9 expression were more resistant to panobinostat, a potent deacetylase inhibitor, than those with low PSMD9 expression. In vitro and in vivo experiments further validated that PSMD9 overexpression rescued the GBM inhibitory effect of panobinostat. CONCLUSION: This study provides new insights into the value of the PSMD family in human GBM diagnosis and prognosis evaluation, and we further identified PSMD9 as a potential therapeutic target. These findings may lead to the development of effective therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Panobinostat , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Prognóstico , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
J Back Musculoskelet Rehabil ; 37(1): 137-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37840481

RESUMO

BACKGROUND: Muscle imbalance has long been recognized as one of the possible pathogeneses for adolescent idiopathic scoliosis (AIS). PIEZO2, the susceptibility gene of AIS, has been identified to play an important role in neuromuscular activities. OBJECTIVE: This study aims to compare the mRNA expression of PIEZO2 between concave and convex paraspinal muscles of AIS patients and to identify the relationship between the ratio of PIEZO2 expression and curve magnitude. METHODS: Twenty female AIS patients (right thoracic curve) who underwent spinal correction surgery were divided into moderate (n= 12) and severe (⩾ 70 degrees) curve groups (n= 8). The morphology of the paraspinal muscles was assessed with spinal MRI. Multifidus specimens were collected during surgical operations from the concave and convex sides of the apical region, and mRNA expression of the PIEZO2 gene was compared between sides. The localization of PIEZO2 protein expression was confirmed with the markers PAX7 and PAX3, and the percentage of PIEZO2+ cells was also investigated. RESULTS: In the moderate curve group, fatty infiltration in the deep paraspinal muscle was significantly higher on the concave side than on the convex side. There were no differences in deep muscle area, superficial muscle area, or fatty infiltration of superficial paraspinal muscle. The mRNA expression of PIEZO2 was significantly increased on the concave side, and the asymmetric expression predominantly occurred in moderate curves rather than severe ones. PIEZO2 was expressed on satellite cells instead of fibers of the muscle spindle. The percent of PIEZO2+PAX7+ cells in myofibers was significantly higher on the concave side in the moderate curve group, but not in the severe curve group. CONCLUSIONS: Asymmetric morphological changes occur in the deep paraspinal muscles of AIS. The PIEZO2 is asymmetrically expressed in the multifidus muscle and is preferentially expressed in satellite cells.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Feminino , Escoliose/genética , Músculos Paraespinais/metabolismo , Coluna Vertebral , RNA Mensageiro/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
7.
PLoS One ; 18(9): e0282275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733659

RESUMO

BACKGROUND: Paeoniflorin (PF), the main active glucoside of Paeonia Lactiflora, has many pharmacological activities, such as inhibition of vasodilation, hypoglycemia, and immunomodulation. Although the current evidence has suggested the therapeutic effects of PF on diabetic nephropathy (DN), its potential mechanism of action is still unclear. PURPOSE: A systematic review and meta-analysis of the existing literature on paeoniflorin treatment in DN animal models was performed to evaluate the efficacy and mechanism of PF in DN animal models. METHODS: The risk of bias in each study was judged using the CAMARADES 10-item quality checklist with the number of criteria met varying from 4 / 10 to 7 / 10, with an average of 5.44. From inception to July 2022, We searched eight databases. We used the Cochrane Collaboration's 10-item checklist and RevMan 5.3 software to assess the risk of bias and analyze the data. Three-dimensional dose/time-effect analyses were conducted to examine the dosage/time-response relations between PF and DN. RESULTS: Nine animal studies were systematically reviewed to evaluate the effectiveness of PF in improving animal models of DN. Meta-analysis data and intergroup comparisons indicated that PF slowed the index of mesangial expansion and tubulointerstitial injury, 24-h urinary protein excretion rate, expression of anti-inflammatory mediators (mRNA of MCP-1, TNF-α, iNOS, and IL-1 ß), and expression of immune downstream factors (P-IRAK1, TIRF, P-IRF3, MyD88, and NF-κBp-p65). Furthermore, modeling methods, animal species, treatment duration, thickness of tissue sections during the experiment, and experimental procedures were subjected to subgroup analyses. CONCLUSION: The present study demonstrated that the reno-protective effects of PF were associated with its inhibition on macrophage infiltration, reduction of inflammatory mediators, and immunomodulatory effects. In conclusion, PF can effectively slow down the progression of DN and hold promise as a protective drug for the treatment of DN. Due to the low bioavailability of PF, further studies on renal histology in animals are urgently needed. We therefore recommend an active exploration of the dose and therapeutic time frame of PF in the clinic and in animals. Moreover, it is suggested to actively explore methods to improve the bioavailability of PF to expand the application of PF in the clinic.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Rim , Proteínas Adaptadoras de Transdução de Sinal , Instituições de Assistência Ambulatorial
8.
Cell Death Dis ; 14(9): 585, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660127

RESUMO

There is an urgent need for novel diagnostic and therapeutic strategies for patients with Glioblastoma multiforme (GBM). Previous studies have shown that BCL2 like 13 (BCL2L13) is a member of the BCL2 family regulating cell growth and apoptosis in different types of tumors. However, the clinical significance, biological role, and potential mechanism in GBM remain unexplored. In this study, we showed that BCL2L13 expression is significantly upregulated in GBM cell lines and clinical GBM tissue samples. Mechanistically, BCL2L13 targeted DNM1L at the Ser616 site, leading to mitochondrial fission and high mitophagy flux. Functionally, these alterations significantly promoted the proliferation and invasion of GBM cells both in vitro and in vivo. Overall, our findings demonstrated that BCL2L13 plays a significant role in promoting mitophagy via DNM1L-mediated mitochondrial fission in GBM. Therefore, the regulation and biological function of BCL2L13 render it a candidate molecular target for treating GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Dinâmica Mitocondrial , Mitofagia/genética , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Dinaminas/genética
9.
Plant Sci ; 334: 111753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268111

RESUMO

Lipid droplets (LD) is an important intracellular organelle for triacylglycerols (TAGs) storage. A variety of proteins on the surface of LD coordinately control the contents, size, stability and biogenesis of LD. However, the LD proteins in Chinese hickory (Carya cathayensis) nuts, which is rich in oil and composed of unsaturated fatty acids, have not been identified and their roles in LD formation still remain largely unknown. In present study, LD fractions from three developmental stages of Chinese hickory seed were enriched and the LD fraction accumulated proteins were then isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein compositions throughout the various developmental phases were calculated using label-free intensity-based absolute quantification (iBAQ) algorithm. The dynamic proportion of high abundance lipid droplets proteins such as oleosins 2 (OLE2), caleosins 1 (CLO1) and steroleosin 5 (HSD5) increased parallelly with the embryo development. For low abundance lipid droplets proteins, seed LD protein 2 (SLDP2), sterol methyltransferase 1 (SMT1) and LD-associated protein 1 (LDAP1) were the predominant proteins. Moreover, 14 low abundance OB proteins such as oil body-associated protein 2 A (OBAP2A) were selected for future investigation that may associate with embryo development. Overall, 62 differentially expressed proteins (DEPs) were determined by label free quantification (LFQ) algorithms and may involve in LD biogenesis. Furthermore, the subcellular localization validation indicated that selected LD proteins were targeted to the lipid droplets, confirming the promising of proteome data. Taken together, this comparative study may shed light on further study to understand the lipid droplets function in the seed, which contains high oil content.


Assuntos
Carya , Proteoma , Proteoma/metabolismo , Gotículas Lipídicas/metabolismo , Carya/metabolismo , Nozes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Desenvolvimento Embrionário
10.
Nanoscale ; 15(20): 9076-9093, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37129436

RESUMO

Articular cartilage injury repair remains a challenge for clinicians and researchers. Mesenchymal stem cells (MSCs) have multiple differentiation potentials and can be induced to differentiate into the chondrogenic lineage for cartilage defect repair; however, the insufficient capacity of chondrogenic differentiation and excess reactive oxygen species (ROS)-mediated oxidative stress, which always lead to differentiation into hypertrophic chondrocytes, still need to be resolved. Accordingly, kartogenin (KGN), which can promote chondrogenic differentiation of MSCs, has shown promise in promoting infected cartilage repair. However, realizing controllable release to prolong its action time and avoid hypertrophic differentiation is critical. We herein developed a mesoporous Prussian blue nanoparticle (mPB)-based near-infrared (NIR) light-responsive controlled nanosystem. KGN was encapsulated in temperature-stimulated responsive phase change materials (PCMs), which were used as excellent gating materials (KGN-PCM@mPBs). In addition, the mPBs could efficiently scavenge ROS by their enzyme-like antioxidative activities. Our study demonstrates that the nanocomposites could efficiently promote chondrogenic differentiation and successfully inhibit the hypertrophic differentiation of MSCs. By intra-articular injection of KGN-PCM@mPBs and NIR-triggered precisely controlled release, satisfactory cartilage repair effects can be achieved in a rat chondral defect model. Thus, this constructed NIR-mediated KGN-PCM@mPB nanoplatform may represent an effective cartilage repair strategy with satisfactory biosafety in clinical applications.


Assuntos
Cartilagem Articular , Ácidos Ftálicos , Ratos , Animais , Espécies Reativas de Oxigênio/farmacologia , Condrócitos , Ácidos Ftálicos/farmacologia , Diferenciação Celular , Condrogênese
12.
Front Pharmacol ; 14: 1154135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188263

RESUMO

With the increase in human lifespan and the aggravation of global aging, the incidence of osteoarthritis (OA) is increasing annually. To better manage and control the progression of OA, prompt diagnosis and treatment for early-stage OA are important. However, a sensitive diagnostic modality and therapy for early OA have not been well developed. The exosome is a class of extracellular vesicles containing bioactive substances, that can be delivered directly from original cells to neighboring cells to modulate cellular activities through intercellular communication. In recent years, exosomes have been considered important in the early diagnosis and treatment of OA. Synovial fluid exosome and its encapsulated substances, e.g., microRNA, lncRNA, and proteins, can not only distinguish OA stages but also prevent the progression of OA by directly targeting cartilage or indirectly modulating the immune microenvironment in the joints. In this mini-review, we include recent studies on the diagnostic and therapeutic modalities of exosomes and hope to provide a new direction for the early diagnosis and treatment of OA disease in the future.

13.
Chin Med J (Engl) ; 136(1): 73-81, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36780427

RESUMO

BACKGROUND: Synovectomy has been introduced into total knee arthroplasty (TKA) with the aim of relieving pain and inflammation of the synovium. However, there are no long-term, comparative data to evaluate the effect of synovectomy in TKA. This study was aimed at assessing pain, function, and complications in patients undergoing synovectomy during TKA for osteoarthritis (OA) at long-term follow-up. METHODS: This was a prospective randomized controlled trial of 42 consecutive patients who underwent staged bilateral TKA. Patients undergoing the first-side TKA were allocated to receive TKA with or without synovectomy followed by a 3-month washout period and crossover to the other strategy for the opposite-side TKA. The overall efficacy of both strategies was evaluated by determination of blood loss, the Knee Society score (KSS), and knee inflammation conditions during a 3-month postoperative period. The postoperative pain, range of motion (ROM), and complications were sequentially evaluated to compare the two groups until 10 years after surgery. RESULTS: At the 10-year follow-up, both groups had a similarly significantly improved ROM (114.88 ±â€Š9.84° vs. 114.02 ±â€Š9.43°, t  = 0.221, P  = 0.815) and pain relief with no differences between the two groups (1.0 [1.0] vs. 1.0 [1.5], U  = 789.500, P  = 0.613). Similar changes in total blood loss, KSS, and knee inflammation were found in both groups during 3 months postoperatively ( P  > 0.05). Additionally, there was no significant difference regarding complications and satisfaction between the two groups ( P  > 0.05). CONCLUSIONS: Synovectomy in conjunction with TKA for primary OA does not seem to provide any benefit regarding postoperative pain, ROM, and satisfaction during a 10-year follow-up. In addition, it may not result in more blood loss and increased incidence of long-term complications. Based on our long-term findings, it should not be performed routinely. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR-INR-16008245; https://www.chictr.org.cn/showproj.aspx?proj=13334 .


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Sinovectomia/efeitos adversos , Sinovectomia/métodos , Osteoartrite do Joelho/cirurgia , Estudos Prospectivos , Dor Pós-Operatória , Inflamação/etiologia , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia , Resultado do Tratamento , Prótese do Joelho/efeitos adversos
14.
ACS Biomater Sci Eng ; 9(3): 1496-1509, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36815316

RESUMO

Patients with diabetes have 15-25% chance for developing diabetic ulcers as a severe complication and formidable challenge for clinicians. Conventional treatment for diabetic ulcers is to surgically remove the necrotic skin, clean the wound, and cover it with skin flaps. However, skin flap often has a limited efficacy, and its acquisition requires a second surgery, which may bring additional risk for the patient. Skin tissue engineering has brought a new solution for diabetic ulcers. Herein, we have developed a bioactive patch through a compound culture and the optimized decellularization strategy. The patch was prepared from porcine small intestinal submucosa (SIS) and modified by an extracellular matrix (ECM) derived from urine-derived stem cells (USCs), which have low immunogenicity while retaining cytokines for angiogenesis and tissue regeneration. The protocol included the optimization of the decellularization time and the establishment of the methods. Furthermore, the in vitro mechanism of wound healing ability of the patch was investigated, and its feasibility for skin wound healing was assessed through an antishrinkage full-thickness skin defect model in type I diabetic rats. As shown, the patch displayed comparable effectiveness to the USCs-loaded SIS. Our findings suggested that this optimized decellularization protocol may provide a strategy for cell-loaded scaffolds that require the removal of cellular material while retaining sufficient bioactive components in the ECM for further applications.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratos , Suínos , Animais , Úlcera , Cicatrização , Matriz Extracelular
15.
J Transl Med ; 21(1): 147, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829235

RESUMO

BACKGROUND: Valtrate, a natural compound isolated from the root of Valeriana, exhibits antitumor activity in many cancers through different mechanisms. However, its efficacy for the treatment of glioblastoma (GBM), a tumor type with a poor prognosis, has not yet been rigorously investigated. METHODS: GBM cell lines were treated with valtrate and CCK-8, colony formation and EdU assays, flow cytometry, and transwell, 3D tumor spheroid invasion and GBM-brain organoid co-culture invasion assays were performed to assess properties of proliferation, viability, apoptosis and invasion/migration. RNA sequencing analysis on valtrate-treated cells was performed to identify putative target genes underlying the antitumor activity of the drug in GBM cells. Western blot analysis, immunofluorescence and immunohistochemistry were performed to evaluate protein levels in valtrate-treated cell lines and in samples obtained from orthotopic xenografts. A specific activator of extracellular signal-regulated kinase (ERK) was used to identify the pathways mediating the effect. RESULTS: Valtrate significantly inhibited the proliferation of GBM cells in vitro by inducing mitochondrial apoptosis and suppressed invasion and migration of GBM cells by inhibiting levels of proteins associated with epithelial mesenchymal transition (EMT). RNA sequencing analysis of valtrate-treated GBM cells revealed platelet-derived growth factor receptor A (PDGFRA) as a potential target downregulated by the drug. Analysis of PDGFRA protein and downstream mediators demonstrated that valtrate inhibited PDGFRA/MEK/ERK signaling. Finally, treatment of tumor-bearing nude mice with valtrate led to decreased tumor volume (fivefold difference at day 28) and enhanced survival (day 27 vs day 36, control vs valtrate-treated) relative to controls. CONCLUSIONS: Taken together, our study demonstrated that the natural product valtrate elicits antitumor activity in GBM cells through targeting PDGFRA and thus provides a candidate therapeutic compound for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Valeriana , Camundongos , Animais , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Valeriana/metabolismo , Camundongos Nus , Proliferação de Células , Glioblastoma/patologia , Transdução de Sinais , Iridoides/farmacologia , Iridoides/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Movimento Celular
16.
Artigo em Inglês | MEDLINE | ID: mdl-36755394

RESUMO

Immunomodulatory biomaterials have emerged as promising treatment agents for bone defects. However, it is unclear how such biomaterials control immune cell behaviors to facilitate large-segment bone defect repair. Herein, we fabricated biphasic calcium phosphate ceramics with nanowhisker structures to explore the immunoregulation features and influence on large-segment bone defect repair. We found that the nanowhisker structures markedly facilitated large-segment bone defect repair by promoting bone regeneration and scaffold resorption. Our in vitro experiment and transcriptomic analysis showed that mechanical stress derived from nanowhisker structures may activate the transcription of Egr-1 to induce early switch of macrophage phenotype to M2, which could not only facilitate osteogenic differentiation of BMSCs but also enhance the expression of osteoclast differentiation-regulating genes of M2 macrophage. In vivo study showed that the nanowhisker structures relieved local inflammatory responses by inducing early switch of macrophage phenotype from M1 to M2, which resulted in accelerated osteoclastogenesis for biomaterial resorption and osteogenesis for ectopic bone formation. Hence, we presume that nanowhisker structures may orchestrate bone formation and material resorption coupling to facilitate large-segment bone defect repair by controlling the switch of macrophage phenotype. This study provides new insight into the designing of immunomodulatory tissue engineering biomaterials for treating large-segment bone defects.

17.
J Mater Chem B ; 11(7): 1557-1567, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36692356

RESUMO

Chopped fiber (CF)- and nano-hydroxyapatite (n-HA)-enhanced silk fibroin (SF) porous hybrid scaffolds (SHCF) were prepared by freeze-drying for bone augmentation. Compared with pristine SF scaffolds, the incorporation of CF and n-HA can significantly enhance the mechanical properties of the composite scaffold. The results of cell experiments and mouse subcutaneous implantation indicated that the SHCF could alleviate foreign body reactions (FBR) led by macrophages and neutrophils, promote the polarization of RAW264.7 cells to anti-inflammatory M2 macrophages, and inhibit the secretion of pro-inflammatory cytokine TNF-α. A rat femoral defect repair model and bulk-RNA-seq analysis indicated that the CF- and n-HA-enhanced SHCF promoted the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by the upregulation of Capns1 expression and regulated the calcium signaling pathway to mediate osteogenesis-related cell behavior, subsequently promoting bone regeneration.


Assuntos
Fibroínas , Ratos , Camundongos , Animais , Fibroínas/farmacologia , Durapatita/farmacologia , Osteogênese , Tecidos Suporte , Porosidade
18.
Sci Rep ; 12(1): 18527, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323805

RESUMO

Prodigiosin (PG), a member of a family of natural red pigments produced by a variety of bacteria, was first discovered in Serratia marcescens. PG has been reported to have an apoptosis-inducing effect in many cancers, such as lymphoma, colon cancer and nasopharyngeal carcinoma. For this study, we used three glioblastoma (GBM) cell lines (LN229, U251 and A172) to explore the effect of prodigiosin on GBM cells. A CCK8 assay was used to evaluate cell viability. We determinedthe cell cycle distribution by flow cytometry and measured proliferation by an EdU incorporation assay. The expression of different molecules was investigated by western blotting and RT-PCR. We further confirmed our results by plasmid transfection and lentiviral transduction. The LN229 xenograft model was used to study the effect of prodigiosin in vivo. We confirmed that prodigiosin played an anticancer role in several GBM cell lines through the KIAA1524/PP2A/Akt signalling pathway. Prodigiosin inhibited the protein expression of KIAA1524 by suppressing its transcription, which led to activation of PP2A. Afterward, PP2A inhibited the phosphorylation of Akt, thereby inducing increased expression of p53/p21. Furthermore, it was verified that prodigiosin inhibited the KIAA1524/PP2A/Akt axis in vivo in the LN229 xenograft model. These data improve the understanding of the anticancer effects of prodigiosin and further highlight the potential of prodigiosin for the development of anti-glioma drugs.


Assuntos
Glioblastoma , Prodigiosina , Humanos , Apoptose , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serratia marcescens/metabolismo , Transdução de Sinais , Proteína Fosfatase 2/metabolismo
19.
Theranostics ; 12(12): 5451-5469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910786

RESUMO

Background: Splicing factors are essential for nascent pre-mRNA processing and critical in cancer progression, suggesting that proteins with splicing functions represent potential molecular targets for cancer therapy. Here, we investigate the role of splicing factors in glioblastoma multiforme (GBM) progression and the possibility of targeting them for the treatment of the disease. Methods: The TCGA and CGGA public databases were used to screen for differentially expressed mRNA splicing factors. Immunohistochemistry and qRT-PCR were used to analyze the expression of non-POU domain-containing octamer-binding protein (NONO), a Drosophila behavior human splicing (DBHS) protein. Knockdown/overexpression of NONO with siRNA and lentiviral expression constructs was used to examine cell growth, apoptosis, and invasion in GBM cells. RNA sequencing was used to identify potential downstream molecular targets of NONO. RIP-PCR and RNA pulldown were used to determine the interaction between NONO and pre-mRNA. JC-1 staining and the seahorse assay were performed to assess redox homeostasis. Results: Expression of NONO was increased in GBM samples and associated with poor survival in patients (P = 0.04). Knockdown of NONO suppressed GBM growth, and overexpression of NONO promoted GBM tumorigenesis in vitro and in vivo. RNA sequencing-based transcriptomic profiling confirmed that knockdown of NONO in U251 and P3 cells resulted in global intron retention of pre-mRNA and led to abnormal splicing of specific pre-mRNAs for GPX1 and CCN1. NONO bound to a consensus motif in the intron of GPX1 pre-mRNA in association with another DBHS protein family member, PSPC1. Knockdown of NONO impaired tumor growth, invasion, and redox homeostasis through aberrant splicing of GPX1. Finally, Auranofin, a small molecule inhibitor of NONO, suppressed GBM tumor growth in an orthotopic xenograft model in mice. Conclusions: We demonstrated that intron retention was a critical alternative RNA splicing event to occur in GBM progression, and that NONO was a key regulator of mRNA splicing in GBM. Targeting NONO represents a novel, potential therapeutic strategy for GBM treatment.


Assuntos
Proteínas de Ligação a DNA , Glioblastoma , Íntrons , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioblastoma/patologia , Glutationa Peroxidase , Humanos , Íntrons/genética , Camundongos , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Glutationa Peroxidase GPX1
20.
Front Genet ; 13: 890174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865015

RESUMO

Rigorous molecular analysis of the immune cell environment and immune response of human tumors has led to immune checkpoint inhibitors as one of the most promising strategies for the treatment of human cancer. However, in human glioblastoma multiforme (GBM) which develops in part by attracting immune cell types intrinsic to the human brain (microglia), standard immunotherapy has yielded inconsistent results in experimental models and patients. Here, we analyzed publicly available expression datasets to identify molecules possibly associated with immune response originating from or influencing the tumor microenvironment in primary tumor samples. Using three glioma datasets (GSE16011, Rembrandt-glioma and TCGA-glioma), we first analyzed the data to distinguish between GBMs of high and low tumor cell purity, a reflection of the cellular composition of the tumor microenvironment, and second, to identify differentially expressed genes (DEGs) between these two groups using GSEA and other analyses. Tumor purity was negatively correlated with patient prognosis. The interferon gamma-related gene BST2 emerged as a DEG that was highly expressed in GBM and negatively correlated with tumor purity. BST2 high tumors also tended to harbor PTEN mutations (31 vs. 9%, BST2 high versus BST2 low ) while BST2 low tumors more often had sustained TP53 mutations (8 versus 36%, BST2 high versus BST2 low ). Prognosis of patients with BST2 high tumors was also poor relative to patients with BST2 low tumors. Further molecular in silico analysis demonstrated that high expression of BST2 was negatively correlated with CD8+ T cells but positively correlated with macrophages with an M2 phenotype. Further functional analysis demonstrated that BST2 was associated with multiple immune checkpoints and cytokines, and may promote tumorigenesis and progression through interferon gamma, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling and the TNF-α signaling via NF-kB pathway. Finally, a series of experiments confirmed that the expression of BST2 can be significantly increased by IFN induction, and knockdown of BST2 can significantly inhibit the growth and invasion of GBM cells, and may affect the phenotype of tumor-associated macrophages. In conclusion, BST2 may promote the progression of GBM and may be a target for treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...